Wikipedia

Timeline of quantum computing

This is a timeline of quantum computing.

1960s [ edit ]

1970s [ edit ]

  • 1973
  • 1975
    • R. P. Poplavskii publishes "Thermodynamical models of information processing" (in Russian)[1] which showed the computational infeasibility of simulating quantum systems on classical computers, due to the superposition principle.
  • 1976
    • Polish mathematical physicist Roman Stanisław Ingarden publishes a seminal paper entitled "Quantum Information Theory" in Reports on Mathematical Physics, vol. 10, 43–72, 1976. (The paper was submitted in 1975.) It is one of the first attempts at creating a quantum information theory, showing that Shannon information theory cannot directly be generalized to the quantum case, but rather that it is possible to construct a quantum information theory, which is a generalization of Shannon's theory, within the formalism of a generalized quantum mechanics of open systems and a generalized concept of observables (the so-called semi-observables).

1980s [ edit ]

  • 1980
    • Paul Benioff describes the first quantum mechanical model of a computer. In this work, Benioff showed that a computer could operate under the laws of quantum mechanics by describing a Schrödinger equation description of Turing machines, laying a foundation for further work in quantum computing. The paper [2] was submitted in June 1979 and published in April of 1980.
    • Yuri Manin briefly motivates the idea of quantum computing[3]
  • 1981
    • At the First Conference on the Physics of Computation, held at MIT in May, Paul Benioff and Richard Feynman give talks on quantum computing. Benioff’s built on his earlier 1980 work showing that a computer can operate under the laws of quantum mechanics. The talk was titled “Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: application to Turing machines”. In Feynman’s talk, he observed that it appeared to be impossible to efficiently simulate an evolution of a quantum system on a classical computer, and he proposed a basic model for a quantum computer.[4]
    • Tommaso Toffoli introduces the reversible Toffoli gate, which, together with the NOT and XOR gates provides a universal set for reversible classical computation.
  • 1982
  • 1984
  • 1985
  • 1989

1990s [ edit ]

2000s [ edit ]

2005 [ edit ]

2006 [ edit ]

  • Materials Science Department of Oxford University, cage a qubit in a "buckyball" (a molecule of buckminsterfullerene), and demonstrated quantum "bang-bang" error correction.[30]
  • Researchers from the University of Illinois at Urbana–Champaign use the Zeno Effect, repeatedly measuring the properties of a photon to gradually change it without actually allowing the photon to reach the program, to search a database without actually "running" the quantum computer.[31]
  • Vlatko Vedral of the University of Leeds and colleagues at the universities of Porto and Vienna found that the photons in ordinary laser light can be quantum mechanically entangled with the vibrations of a macroscopic mirror.[32]
  • Samuel L. Braunstein at the University of York along with the University of Tokyo and the Japan Science and Technology Agency gave the first experimental demonstration of quantum telecloning.[33]
  • Professors at the University of Sheffield develop a means to efficiently produce and manipulate individual photons at high efficiency at room temperature.[34]
  • New error checking method theorized for Josephson junction computers.[35]
  • First 12 qubit quantum computer benchmarked by researchers at the Institute for Quantum Computing and the Perimeter Institute for Theoretical Physics in Waterloo, as well as MIT, Cambridge.[36]
  • Two dimensional ion trap developed for quantum computing.[37]
  • Seven atoms placed in stable line, a step on the way to constructing a quantum gate, at the University of Bonn.[38]
  • A team at Delft University of Technology in the Netherlands created a device that can manipulate the "up" or "down" spin-states of electrons on quantum dots.[39]
  • University of Arkansas develops quantum dot molecules.[40]
  • Spinning new theory on particle spin brings science closer to quantum computing.[41]
  • University of Copenhagen develops quantum teleportation between photons and atoms.[42]
  • University of Camerino scientists develop theory of macroscopic object entanglement, which has implications for the development of quantum repeaters.[43]
  • Tai-Chang Chiang, at Illinois at Urbana–Champaign, finds that quantum coherence can be maintained in mixed-material systems.[44]
  • Cristophe Boehme, University of Utah, demonstrates the feasibility of reading spin-data on a silicon-phosphorus quantum computer.[45]

2007 [ edit ]

  • Subwavelength waveguide developed for light.[46]
  • Single photon emitter for optical fibers developed.[47]
  • Six-photon one-way quantum computer is created in lab.[48]
  • New material proposed for quantum computing.[49]
  • Single atom single photon server devised.[50]
  • First use of Deutsch's Algorithm in a cluster state quantum computer.[51]
  • University of Cambridge develops electron quantum pump.[52]
  • Superior method of qubit coupling developed.[53]
  • Successful demonstration of controllably coupled qubits.[54]
  • Breakthrough in applying spin-based electronics to silicon.[55]
  • Scientists demonstrate quantum state exchange between light and matter.[56]
  • Diamond quantum register developed.[57]
  • Controlled-NOT quantum gates on a pair of superconducting quantum bits realized.[58]
  • Scientists contain, study hundreds of individual atoms in 3D array.[59]
  • Nitrogen in buckyball molecule used in quantum computing.[60]
  • Large number of electrons quantum coupled.[61]
  • Spin-orbit interaction of electrons measured.[62]
  • Atoms quantum manipulated in laser light.[63]
  • Light pulses used to control electron spins.[64]
  • Quantum effects demonstrated across tens of nanometers.[65]
  • Light pulses used to accelerate quantum computing development.[66]
  • Quantum RAM blueprint unveiled.[67]
  • Model of quantum transistor developed.[68]
  • Long distance entanglement demonstrated.[69]
  • Photonic quantum computing used to factor number by two independent labs.[70]
  • Quantum bus developed by two independent labs.[71]
  • Superconducting quantum cable developed.[72]
  • Transmission of qubits demonstrated.[73]
  • Superior qubit material devised.[74]
  • Single electron qubit memory.[75]
  • Bose-Einstein condensate quantum memory developed.[76]
  • D-Wave Systems demonstrates use of a 28-qubit quantum annealing computer.[77]
  • New cryonic method reduces decoherence and increases interaction distance, and thus quantum computing speed.[78]
  • Photonic quantum computer demonstrated.[79]
  • Graphene quantum dot spin qubits proposed.[80]

2008 [ edit ]

  • Graphene quantum dot qubits[81]
  • Quantum bit stored[82]
  • 3D qubit-qutrit entanglement demonstrated[83]
  • Analog quantum computing devised[84]
  • Control of quantum tunneling[85]
  • Entangled memory developed[86]
  • Superior NOT gate developed[87]
  • Qutrits developed[88]
  • Quantum logic gate in optical fiber[89]
  • Superior quantum Hall Effect discovered[90]
  • Enduring spin states in quantum dots[91]
  • Molecular magnets proposed for quantum RAM[92]
  • Quasiparticles offer hope of stable quantum computer[93]
  • Image storage may have better storage of qubits[94]
  • Quantum entangled images[95]
  • Quantum state intentionally altered in molecule[96]
  • Electron position controlled in silicon circuit[97]
  • Superconducting electronic circuit pumps microwave photons[98]
  • Amplitude spectroscopy developed[99]
  • Superior quantum computer test developed[100]
  • Optical frequency comb devised[101]
  • Quantum Darwinism supported[102]
  • Hybrid qubit memory developed[103]
  • Qubit stored for over 1 second in atomic nucleus[104]
  • Faster electron spin qubit switching and reading developed[105]
  • Possible non-entanglement quantum computing[106]
  • D-Wave Systems claims to have produced a 128 qubit computer chip, though this claim has yet to be verified.[107]

2009 [ edit ]

  • Carbon 12 purified for longer coherence times[108]
  • Lifetime of qubits extended to hundreds of milliseconds[109]
  • Quantum control of photons[110]
  • Quantum entanglement demonstrated over 240 micrometres[111]
  • Qubit lifetime extended by factor of 1000[112]
  • First electronic quantum processor created[113]
  • Six-photon graph state entanglement used to simulate the fractional statistics of anyons living in artificial spin-lattice models[114]
  • Single molecule optical transistor[115]
  • NIST reads, writes individual qubits[116]
  • NIST demonstrates multiple computing operations on qubits[117]
  • First large-scale topological cluster state quantum architecture developed for atom-optics[118]
  • A combination of all of the fundamental elements required to perform scalable quantum computing through the use of qubits stored in the internal states of trapped atomic ions shown[119]
  • Researchers at University of Bristol demonstrate Shor's algorithm on a silicon photonic chip[120]
  • Quantum Computing with an Electron Spin Ensemble[121]
  • Scalable flux qubit demonstrated[122]
  • Photon machine gun developed for quantum computing[123]
  • Quantum algorithm developed for differential equation systems[124]
  • First universal programmable quantum computer unveiled[125]
  • Scientists electrically control quantum states of electrons[126]
  • Google collaborates with D-Wave Systems on image search technology using quantum computing[127]
  • A method for synchronizing the properties of multiple coupled CJJ rf-SQUID flux qubits with a small spread of device parameters due to fabrication variations was demonstrated[128]
  • Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits [129]

2010s [ edit ]

2010 [ edit ]

  • Ion trapped in optical trap[130]
  • Optical quantum computer with three qubits calculated the energy spectrum of molecular hydrogen to high precision[131]
  • First germanium laser brings us closer to 'optical computers'[132]
  • Single electron qubit developed[133]
  • Quantum state in macroscopic object[134]
  • New quantum computer cooling method developed[135]
  • Racetrack ion trap developed[136]
  • Evidence for a Moore-Read state in the quantum Hall plateau,[137] which would be suitable for topological quantum computation
  • Quantum interface between a single photon and a single atom demonstrated[138]
  • LED quantum entanglement demonstrated[139]
  • Multiplexed design speeds up transmission of quantum information through a quantum communications channel[140]
  • Two photon optical chip[141]
  • Microfabricated planar ion traps[142][143]
  • Qubits manipulated electrically, not magnetically[144]

2011 [ edit ]

  • Entanglement in a solid-state spin ensemble[145]
  • NOON photons in superconducting quantum integrated circuit[146]
  • Quantum antenna[147]
  • Multimode quantum interference[148]
  • Magnetic Resonance applied to quantum computing[149]
  • Quantum pen[150]
  • Atomic "Racing Dual"[151]
  • 14 qubit register[152]
  • D-Wave claims to have developed quantum annealing and introduces their product called D-Wave One. The company claims this is the first commercially available quantum computer[153]
  • Repetitive error correction demonstrated in a quantum processor[154]
  • Diamond quantum computer memory demonstrated[155]
  • Qmodes developed[156]
  • Decoherence suppressed[157]
  • Simplification of controlled operations[158]
  • Ions entangled using microwaves[159]
  • Practical error rates achieved[160]
  • Quantum computer employing Von Neumann architecture[161]
  • Quantum spin Hall topological insulator[162]
  • Two Diamonds Linked by Quantum Entanglement could help develop photonic processors[163]

2012 [ edit ]

  • D-Wave claims a quantum computation using 84 qubits.[164]
  • Physicists create a working transistor from a single atom[165][166]
  • A method for manipulating the charge of nitrogen vacancy-centres in diamond[167]
  • Reported creation of a 300 qubit/particle quantum simulator.[168][169]
  • Demonstration of topologically protected qubits with an eight-photon entanglement, a robust approach to practical quantum computing[170]
  • 1QB Information Technologies (1QBit) founded. World's first dedicated quantum computing software company.[171]
  • First design of a quantum repeater system without a need for quantum memories[172]
  • Decoherence suppressed for 2 seconds at room temperature by manipulating Carbon-13 atoms with lasers.[173][174]
  • Theory of Bell-based randomness expansion with reduced assumption of measurement independence.[175]
  • New low overhead method for fault-tolerant quantum logic developed, called lattice surgery[176]

2013 [ edit ]

  • Coherence time of 39 minutes at room temperature (and 3 hours at cryogenic temperatures) demonstrated for an ensemble of impurity-spin qubits in isotopically purified silicon.[177]
  • Extension of time for qubit maintained in superimposed state for ten times longer than what has ever been achieved before[178]
  • First resource analysis of a large-scale quantum algorithm using explicit fault-tolerant, error-correction protocols was developed for factoring[179]

2014 [ edit ]

2015 [ edit ]

  • Optically addressable nuclear spins in a solid with a six-hour coherence time.[190]
  • Quantum information encoded by simple electrical pulses.[191]
  • Quantum error detection code using a square lattice of four superconducting qubits.[192]
  • D-Wave Systems Inc. announced on 22 June that it had broken the 1000 qubit barrier.[193]
  • Two qubit silicon logic gate successfully developed.[194]
  • Quantum computer, along with quantum superposition and entanglement, emulated by a classical analog computer, with the result that the fully classical system behaves like a true quantum computer.[195]

2016 [ edit ]

  • Physicists led by Rainer Blatt joined forces with scientists at MIT, led by Isaac Chuang, to efficiently implement Shor’s algorithm in an ion-trap based quantum computer.[196]
  • IBM releases the Quantum Experience, an online interface to their superconducting systems. The system is immediately used to publish new protocols in quantum information processing[197][198]
  • Google, using an array of 9 superconducting qubits developed by the Martinis group and UCSB, simulates a hydrogen molecule.[199]
  • Scientists in Japan and Australia invent the quantum version of a Sneakernet communications system[200]

2017 [ edit ]

  • D-Wave Systems Inc. announces general commercial availability of the D-Wave 2000Q quantum annealer, which it claims has 2000 qubits.[201]
  • Blueprint for a microwave trapped ion quantum computer published.[202]
  • IBM unveils 17-qubit quantum computer—and a better way of benchmarking it.[203]
  • Scientists build a microchip that generates two entangled qudits each with 10 states, for 100 dimensions total.[204]
  • Microsoft reveals an unnamed quantum programming language, integrated with Visual Studio. Programs can be executed locally on a 32-qubit simulator, or a 40-qubit simulator on Azure.[205]
  • Intel confirms development of a 17-qubit superconducting test chip.[206]
  • IBM reveals a working 50-qubit quantum computer that can maintain its quantum state for 90 microseconds.[207]

2018 [ edit ]

  • MIT scientists report the discovery of a new triple-photon form of light.[208][209]
  • Oxford researchers successfully used a trapped-ion technique where they place two charged atoms in a state of quantum entanglement, to speed up logic gates by a factor of 20 to 60 times as compared with the previous best gates, translated to 1.6 microseconds long, with 99.8% precision.[210]
  • QuTech successfully tests silicon-based 2-spin-qubit processor.[211]
  • Google announces the creation of a 72-qubit quantum chip, called "Bristlecone",[212] achieving a new record.
  • Intel begins testing silicon-based spin-qubit processor, manufactured in the company's D1D Fab in Oregon.[213]
  • Intel confirms development of a 49-qubit superconducting test chip, called "Tangle Lake".[214]
  • Japanese researchers demonstrate universal holonomic quantum gates.[215]
  • Integrated photonic platform for quantum information with continuous variables.[216]
  • On December 17, 2018, the company IonQ introduced the first commercial trapped ion quantum computer, with a program length of over 60 two-qubit gates, 11 Fully-connected qubits, 55 Addressable pairs, One-qubit gate error <0.03% and Two-qubit gate error <1.0% [217] [218]
  • On December 21, 2018, the National Quantum Initiative Act was signed into law by President Donald Trump, establishing the goals and priorities for a 10-year plan to accelerate the development of quantum information science and technology applications in the United States.[219][220][221]

2019 [ edit ]

  • IBM unveils its first commercial quantum computer, the IBM Q System One,[222] designed by UK-based Map Project Office and Universal Design Studio and manufactured by Goppion.[223]
  • Nike Dattani and co-workers de-code D-Wave's Pegasus architecture and make its description open to the public.[224][225]
  • Austrian physicists demonstrate self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics using a feedback loop between a classical computer and a quantum co-processor. [226]
  • A paper by Google's quantum computer research team was briefly available in late September 2019, claiming the project has reached quantum supremacy.[227][228][229]
  • IBM reveals its biggest yet quantum computer, consisting of 53 qubits. The system goes online in October 2019.[230]

See also [ edit ]

References [ edit ]

  1. ^ Poplavskii, R.P (1975). "Thermodynamical models of information processing". Uspekhi Fizicheskikh Nauk (in Russian). 115 (3): 465–501. doi:10.3367/UFNr.0115.197503d.0465.
  2. ^ Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/bf01011339.
  3. ^ Manin, Yu I (1980). Vychislimoe i nevychislimoe (Computable and Noncomputable) (in Russian). Sov. Radio. pp. 13–15. Archived from the original on May 10, 2013. Retrieved March 4, 2013.
  4. ^ Simulating physics with computers https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
  5. ^ Benioff, P. (1982). "Quantum mechanical hamiltonian models of turing machines". Journal of Statistical Physics. 29 (3): 515–546. Bibcode:1982JSP....29..515B. doi:10.1007/BF01342185.
  6. ^ Wootters, W. K.; Zurek, W. H. (1982). "A single quantum cannot be cloned". Nature. 299 (5886): 802–803. Bibcode:1982Natur.299..802W. doi:10.1038/299802a0.
  7. ^ Dieks, D. (1982). "Communication by EPR devices". Physics Letters A. 92 (6): 271–272. Bibcode:1982PhLA...92..271D. CiteSeerX 10.1.1.654.7183. doi:10.1016/0375-9601(82)90084-6.
  8. ^ Ray, P.; Chakrabarti, B. K.; Chakrabarti, Arunava (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations". Physical Review B. 39 (16): 11828–11832. doi:10.1103/PhysRevB.39.11828.
  9. ^ Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv:0801.2193. Bibcode:2008RvMP...80.1061D. CiteSeerX 10.1.1.563.9990. doi:10.1103/RevModPhys.80.1061.
  10. ^ Ekert, A. K (1991). "Quantum cryptography based on Bell's theorem". Phys. Rev. Lett. 67 (6): 661–663. Bibcode:1991PhRvL..67..661E. doi:10.1103/PhysRevLett.67.661. PMID 10044956.
  11. ^ Monroe, C; Meekhof, D. M; King, B. E; Itano, W. M; Wineland, D. J (December 18, 1995). "Demonstration of a Fundamental Quantum Logic Gate" (PDF). Physical Review Letters. 75 (25): 4714–4717. Bibcode:1995PhRvL..75.4714M. doi:10.1103/PhysRevLett.75.4714. PMID 10059979. Retrieved December 29, 2007.
  12. ^ DiVincenzo, David P (1996). "Topics in Quantum Computers". arXiv:cond-mat/9612126. Bibcode:1996cond.mat.12126D. Cite journal requires |journal= (help)
  13. ^ A. Yu. Kitaev (2003). "Fault-tolerant quantum computation by anyons". Annals of Physics. 303 (1): 2–30. arXiv:quant-ph/9707021. Bibcode:2003AnPhy.303....2K. doi:10.1016/S0003-4916(02)00018-0.
  14. ^ D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots", Phys. Rev. A 57, p120 (1998); on arXiv.org in Jan. 1997
  15. ^ Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark (April 13, 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15): 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408.
  16. ^ Kane, B. E. (May 14, 1998). "A silicon-based nuclear spin quantum computer". Nature. 393 (6681): 133–137. Bibcode:1998Natur.393..133K. doi:10.1038/30156. ISSN 0028-0836.
  17. ^ Gottesman, Daniel (1999). "The Heisenberg Representation of Quantum Computers". In S. P. Corney; R. Delbourgo; P. D. Jarvis (eds.). Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics. 22. Cambridge, MA: International Press. pp. 32–43. arXiv:quant-ph/9807006v1. Bibcode:1998quant.ph..7006G.
  18. ^ Braunstein, S. L; Caves, C. M; Jozsa, R; Linden, N; Popescu, S; Schack, R (1999). "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing". Physical Review Letters. 83 (5): 1054–1057. arXiv:quant-ph/9811018. Bibcode:1999PhRvL..83.1054B. doi:10.1103/PhysRevLett.83.1054.
  19. ^ Linden, Noah; Popescu, Sandu (2001). "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?". Physical Review Letters. 87 (4): 047901. arXiv:quant-ph/9906008. Bibcode:2001PhRvL..87d7901L. doi:10.1103/PhysRevLett.87.047901. PMID 11461646.
  20. ^ Raussendorf, R; Briegel, H. J (2001). "A One-Way Quantum Computer". Physical Review Letters. 86 (22): 5188–91. Bibcode:2001PhRvL..86.5188R. CiteSeerX 10.1.1.252.5345. doi:10.1103/PhysRevLett.86.5188. PMID 11384453.
  21. ^ n.d. Institute for Quantum Computing "Quick Facts". May 15, 2013. Retrieved July 26, 2016.
  22. ^ Gulde, S; Riebe, M; Lancaster, G. P. T; Becher, C; Eschner, J; Häffner, H; Schmidt-Kaler, F; Chuang, I. L; Blatt, R (January 2, 2003). "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer". Nature. 421: 48–50. Bibcode:2003Natur.421...48G. doi:10.1038/nature01336. PMID 12511949.
  23. ^ Pittman, T. B.; Fitch, M. J.; Jacobs, B. C; Franson, J. D. (2003). "Experimental controlled-not logic gate for single photons in the coincidence basis". Phys. Rev. A. 68 (3): 032316. arXiv:quant-ph/0303095. Bibcode:2003PhRvA..68c2316P. doi:10.1103/physreva.68.032316.
  24. ^ O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (2003). "Demonstration of an all-optical quantum controlled-NOT gate". Nature. 426 (6964): 264–267. arXiv:quant-ph/0403062. Bibcode:2003Natur.426..264O. doi:10.1038/nature02054. PMID 14628045.
  25. ^ Schmidt-Kaler, F; Häffner, H; Riebe, M; Gulde, S; Lancaster, G. P. T; Deutschle, T; Becher, C; Roos, C. F; Eschner, J; Blatt, R (March 27, 2003). "Realization of the Cirac-Zoller controlled-NOT quantum gate". Nature. 422: 408–411. Bibcode:2003Natur.422..408S. doi:10.1038/nature01494. PMID 12660777.
  26. ^ Riebe, M; Häffner, H; Roos, C. F; Hänsel, W; Benhelm, J; Lancaster, G. P. T; Körber, T. W; Becher, C; Schmidt-Kaler, F; James, D. F. V; Blatt, R (June 17, 2004). "Deterministic quantum teleportation with atoms". Nature. 429: 734–737. Bibcode:2004Natur.429..737B. doi:10.1038/nature02570. PMID 15201903.
  27. ^ Zhao, Z; Chen, Y. A; Zhang, A. N; Yang, T; Briegel, H. J; Pan, J. W (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". Nature. 430 (6995): 54–58. arXiv:quant-ph/0402096. Bibcode:2004Natur.430...54Z. doi:10.1038/nature02643. PMID 15229594.
  28. ^ Dumé, Belle (November 22, 2005). "Breakthrough for quantum measurement". PhysicsWeb. Retrieved August 10, 2018.
  29. ^ Häffner, H; Hänsel, W; Roos, C. F; Benhelm, J; Chek-Al-Kar, D; Chwalla, M; Körber, T; Rapol, U. D; Riebe, M; Schmidt, P. O; Becher, C; Gühne, O; Dür, W; Blatt, R (December 1, 2005). "Scalable multiparticle entanglement of trapped ions". Nature. 438 (7068): 643–646. arXiv:quant-ph/0603217. Bibcode:2005Natur.438..643H. doi:10.1038/nature04279. PMID 16319886.
  30. ^ January 4, 2006 University of Oxford "Bang-bang: a step closer to quantum supercomputers". Retrieved December 29, 2007.
  31. ^ Dowling, Jonathan P. (2006). "To Compute or Not to Compute?". Nature. 439 (7079): 919–920. Bibcode:2006Natur.439..919D. doi:10.1038/439919a. PMID 16495978.
  32. ^ Belle Dumé (February 23, 2007). "Entanglement heats up". Physics World. Archived from the original on October 19, 2007.
  33. ^ February 16, 2006 University of York "Captain Kirk's clone and the eavesdropper" (Press release). Archived from the original on February 7, 2007. Retrieved December 29, 2007.
  34. ^ March 24, 2006 Soft Machines "The best of both worlds – organic semiconductors in inorganic nanostructures". Retrieved May 20, 2010.
  35. ^ June 8, 2010 New Scientist Tom Simonite. "Error-check breakthrough in quantum computing". Retrieved May 20, 2010.
  36. ^ May 8, 2006 ScienceDaily "12-qubits Reached In Quantum Information Quest". Retrieved May 20, 2010.
  37. ^ July 7, 2010 New Scientist Tom Simonite. "Flat 'ion trap' holds quantum computing promise". Retrieved May 20, 2010.
  38. ^ July 12, 2006 PhysOrg.com Luerweg, Frank. "Quantum Computer: Laser tweezers sort atoms". Archived from the original on December 15, 2007. Retrieved December 29, 2007.
  39. ^ August 16, 2006 New Scientist "'Electron-spin' trick boosts quantum computing". Archived from the original on November 22, 2006. Retrieved December 29, 2007.
  40. ^ August 16, 2006 NewswireToday Michael Berger. "Quantum Dot Molecules – One Step Further Towards Quantum Computing". Retrieved December 29, 2007.
  41. ^ September 7, 2006 PhysOrg.com "Spinning new theory on particle spin brings science closer to quantum computing". Archived from the original on January 17, 2008. Retrieved December 29, 2007.
  42. ^ October 4, 2006 New Scientist Merali, Zeeya (2006). "Spooky steps to a quantum network". New Scientist. 192 (2572): 12. doi:10.1016/s0262-4079(06)60639-8. Retrieved December 29, 2007.
  43. ^ October 24, 2006 PhysOrg.com Lisa Zyga. "Scientists present method for entangling macroscopic objects". Archived from the original on October 13, 2007. Retrieved December 29, 2007.
  44. ^ November 2, 2006 University of Illinois at Urbana–Champaign James E. Kloeppel. "Quantum coherence possible in incommensurate electronic systems". Retrieved August 19, 2010.
  45. ^ November 19, 2006 PhysOrg.com "A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins'". Archived from the original on September 29, 2007. Retrieved December 29, 2007.
  46. ^ January 8, 2007 New Scientist Jeff Hecht. "Nanoscopic 'coaxial cable' transmits light". Retrieved December 30, 2007.
  47. ^ February 21, 2007 The Engineer "Toshiba unveils quantum security". Retrieved December 30, 2007.
  48. ^ Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei (2007). "Experimental entanglement of six photons in graph states". Nature Physics. 3 (2): 91–95. arXiv:quant-ph/0609130. Bibcode:2007NatPh...3...91L. doi:10.1038/nphys507.
  49. ^ March 15, 2007 New Scientist Zeeya Merali. "The universe is a string-net liquid". Retrieved December 30, 2007.
  50. ^ March 12, 2007 Max Planck Society "A Single-Photon Server with Just One Atom" (Press release). Retrieved December 30, 2007.
  51. ^ April 18, 2007 PhysOrg.com Miranda Marquit. "First use of Deutsch's Algorithm in a cluster state quantum computer". Archived from the original on January 17, 2008. Retrieved December 30, 2007.
  52. ^ April 19, 2007 Electronics Weekly Steve Bush. "Cambridge team closer to working quantum computer". Archived from the original on May 15, 2012. Retrieved December 30, 2007.
  53. ^ May 7, 2007 Wired Cyrus Farivar (May 7, 2007). "It's the "Wiring" That's Tricky in Quantum Computing". Wired. Archived from the original on July 6, 2008. Retrieved December 30, 2007.
  54. ^ May 8, 2007 Media-Newswire.com "NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits" (Press release). Retrieved December 30, 2007.
  55. ^ May 16, 2007 Scientific American JR Minkel. "Spintronics Breaks the Silicon Barrier". Retrieved December 30, 2007.
  56. ^ May 22, 2007 PhysOrg.com Lisa Zyga. "Scientists demonstrate quantum state exchange between light and matter". Archived from the original on March 7, 2008. Retrieved December 30, 2007.
  57. ^ June 1, 2007 Science Dutt, M. V; Childress, L; Jiang, L; Togan, E; Maze, J; Jelezko, F; Zibrov, A. S; Hemmer, P. R; Lukin, M. D (2007). "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond". Science. 316 (5829): 1312–6. Bibcode:2007Sci...316.....D. doi:10.1126/science.1139831. PMID 17540898.
  58. ^ June 14, 2007 Nature Plantenberg, J. H.; De Groot, P. C.; Harmans, C. J. P. M.; Mooij, J. E. (2007). "Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits". Nature. 447 (7146): 836–839. Bibcode:2007Natur.447..836P. doi:10.1038/nature05896. PMID 17568742.
  59. ^ June 17, 2007 New Scientist Mason Inman. "Atom trap is a step towards a quantum computer". Retrieved December 30, 2007.
  60. ^ June 29, 2007 Nanowerk.com "Can nuclear qubits point the way?". Retrieved December 30, 2007.
  61. ^ July 27, 2007 ScienceDaily "Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers". Retrieved December 30, 2007.
  62. ^ July 23, 2007 PhysOrg.com Miranda Marquit. "Indium arsenide may provide clues to quantum information processing". Archived from the original on September 26, 2007. Retrieved December 30, 2007.
  63. ^ July 25, 2007 National Institute of Standards and Technology "Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance". Archived from the original on December 18, 2007. Retrieved December 30, 2007.
  64. ^ August 15, 2007 PhysOrg.com Lisa Zyga. "Ultrafast quantum computer uses optically controlled electrons". Archived from the original on January 2, 2008. Retrieved December 30, 2007.
  65. ^ August 15, 2007 Electronics Weekly Steve Bush. "Research points way to qubits on standard chips". Retrieved December 30, 2007.
  66. ^ August 17, 2007 ScienceDaily "Computing Breakthrough Could Elevate Security To Unprecedented Levels". Retrieved December 30, 2007.
  67. ^ August 21, 2007 New Scientist Stephen Battersby. "Blueprints drawn up for quantum computer RAM". Retrieved December 30, 2007.
  68. ^ August 26, 2007 PhysOrg.com "Photon-transistors for the supercomputers of the future". Archived from the original on January 1, 2008. Retrieved December 30, 2007.
  69. ^ September 5, 2007 University of Michigan "Physicists establish "spooky" quantum communication". Archived from the original on December 28, 2007. Retrieved December 30, 2007.
  70. ^ September 13, 2007 huliq.com "Qubits poised to reveal our secrets". Retrieved December 30, 2007.
  71. ^ September 26, 2007 New Scientist Saswato Das. "Quantum chip rides on superconducting bus". Retrieved December 30, 2007.
  72. ^ September 27, 2007 ScienceDaily "Superconducting Quantum Computing Cable Created". Retrieved December 30, 2007.
  73. ^ October 11, 2007 Electronics Weekly Steve Bush. "Qubit transmission signals quantum computing advance". Archived from the original on October 12, 2007. Retrieved December 30, 2007.
  74. ^ October 8, 2007 TG Daily Rick C. Hodgin. "New material breakthrough brings quantum computers one step closer". Archived from the original on December 12, 2007. Retrieved December 30, 2007.
  75. ^ October 19, 2007 Optics.org "Single electron-spin memory with a semiconductor quantum dot". Retrieved December 30, 2007.
  76. ^ November 7, 2007 New Scientist Stephen Battersby. "'Light trap' is a step towards quantum memory". Retrieved December 30, 2007.
  77. ^ November 12, 2007 Nanowerk.com "World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference". Retrieved December 30, 2007.
  78. ^ December 12, 2007 PhysOrg.com "Desktop device generates and traps rare ultracold molecules". Archived from the original on December 15, 2007. Retrieved December 31, 2007.
  79. ^ December 19, 2007 University of Toronto Kim Luke. "U of T scientists make quantum computing leap Research is step toward building first quantum computers". Archived from the original on December 28, 2007. Retrieved December 31, 2007.
  80. ^ February 18, 2007 www.nature.com (journal) Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (2007). "Spin qubits in graphene quantum dots". Nature Physics. 3 (3): 192–196. arXiv:cond-mat/0611252. Bibcode:2007NatPh...3..192T. doi:10.1038/nphys544.
  81. ^ January 15, 2008 Miranda Marquit. "Graphene quantum dot may solve some quantum computing problems". Archived from the original on January 17, 2008. Retrieved January 16, 2008.
  82. ^ January 25, 2008 EETimes Europe. "Scientists succeed in storing quantum bit". Retrieved February 5, 2008.
  83. ^ February 26, 2008 Lisa Zyga. "Physicists demonstrate qubit-qutrit entanglement". Archived from the original on February 29, 2008. Retrieved February 27, 2008.
  84. ^ February 26, 2008 ScienceDaily. "Analog logic for quantum computing". Retrieved February 27, 2008.
  85. ^ March 5, 2008 Zenaida Gonzalez Kotala. "Future 'quantum computers' will offer increased efficiency... and risks". Retrieved March 5, 2008.
  86. ^ March 6, 2008 Ray Kurzweil. "Entangled memory is a first". Retrieved March 8, 2008.
  87. ^ March 27, 2008 Joann Fryer. "Silicon chips for optical quantum technologies". Retrieved March 29, 2008.
  88. ^ April 7, 2008 Ray Kurzweil. "Qutrit breakthrough brings quantum computers closer". Retrieved April 7, 2008.
  89. ^ April 15, 2008 Kate Greene. "Toward a quantum internet". Retrieved April 16, 2008.
  90. ^ April 24, 2008 Princeton University. "Scientists discover exotic quantum state of matter". Archived from the original on April 30, 2008. Retrieved April 29, 2008.
  91. ^ May 23, 2008 Belle Dumé. "Spin states endure in quantum dot". Archived from the original on May 29, 2008. Retrieved June 3, 2008.
  92. ^ May 27, 2008 Chris Lee. "Molecular magnets in soap bubbles could lead to quantum RAM". Retrieved June 3, 2008.
  93. ^ June 2, 2008 Weizmann Institute of Science. "Scientists find new 'quasiparticles'". Retrieved June 3, 2008.
  94. ^ June 23, 2008 Lisa Zyga. "Physicists Store Images in Vapor". Archived from the original on September 15, 2008. Retrieved June 26, 2008.
  95. ^ June 25, 2008 Physorg.com. "Physicists Produce Quantum-Entangled Images". Archived from the original on August 29, 2008. Retrieved June 26, 2008.
  96. ^ June 26, 2008 Steve Tally. "Quantum computing breakthrough arises from unknown molecule". Retrieved June 28, 2008.
  97. ^ July 17, 2008 Lauren Rugani. "Quantum Leap". Retrieved July 17, 2008.
  98. ^ August 5, 2008 Science Daily. "Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons". Retrieved August 6, 2008.
  99. ^ September 3, 2008 Physorg.com. "New probe could aid quantum computing". Archived from the original on September 5, 2008. Retrieved September 6, 2008.
  100. ^ September 25, 2008 ScienceDaily. "Novel Process Promises To Kick-start Quantum Technology Sector". Retrieved October 16, 2008.
  101. ^ September 22, 2008 Jeremy L. O’Brien. "Quantum computing over the rainbow". Retrieved October 16, 2008.
  102. ^ October 20, 2008 Science Blog. "Relationships Between Quantum Dots – Stability and Reproduction". Archived from the original on October 22, 2008. Retrieved October 20, 2008.
  103. ^ October 22, 2008 Steven Schultz. "Memoirs of a qubit: Hybrid memory solves key problem for quantum computing". Retrieved October 23, 2008.
  104. ^ October 23, 2008 National Science Foundation. "World's Smallest Storage Space ... the Nucleus of an Atom". Retrieved October 27, 2008.
  105. ^ November 20, 2008 Dan Stober. "Stanford: Quantum computing spins closer". Retrieved November 22, 2008.
  106. ^ December 5, 2008 Miranda Marquit. "Quantum computing: Entanglement may not be necessary". Archived from the original on December 8, 2008. Retrieved December 9, 2008.
  107. ^ December 19, 2008 Next Big Future. "Dwave System's 128 qubit chip has been made". Archived from the original on December 23, 2008. Retrieved December 20, 2008.
  108. ^ April 7, 2009 Next Big Future. "Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing". Archived from the original on April 11, 2009. Retrieved May 19, 2009.
  109. ^ April 23, 2009 Kate Greene. "Extending the Life of Quantum Bits". Retrieved April 23, 2009.
  110. ^ May 29, 2009 physorg.com. "Researchers make breakthrough in the quantum control of light". Archived from the original on January 31, 2013. Retrieved May 30, 2009.
  111. ^ June 3, 2009 physorg.com. "Physicists demonstrate quantum entanglement in mechanical system". Archived from the original on January 31, 2013. Retrieved June 13, 2009.
  112. ^ June 24, 2009 Nicole Casal Moore. "Lasers can lengthen quantum bit memory by 1,000 times". Retrieved June 27, 2009.
  113. ^ June 29, 2009 www.sciencedaily.com. "First Electronic Quantum Processor Created". Retrieved June 29, 2009.
  114. ^ Lu, C. Y; Gao, W. B; Gühne, O; Zhou, X. Q; Chen, Z. B; Pan, J. W (2009). "Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator". Physical Review Letters. 102 (3): 030502. arXiv:0710.0278. Bibcode:2009PhRvL.102c0502L. doi:10.1103/PhysRevLett.102.030502. PMID 19257336.
  115. ^ July 6, 2009 Dario Borghino. "Quantum computer closer: Optical transistor made from single molecule". Retrieved July 8, 2009.
  116. ^ July 8, 2009 R. Colin Johnson. "NIST advances quantum computing". Retrieved July 9, 2009.
  117. ^ August 7, 2009 Kate Greene. "Scaling Up a Quantum Computer". Retrieved August 8, 2009.
  118. ^ August 11, 2009 Devitt, S. J; Fowler, A. G; Stephens, A. M; Greentree, A. D; Hollenberg, L. C. L; Munro, W. J; Nemoto, K (2009). "Architectural design for a topological cluster state quantum computer". New J. Phys. 11 (83032): 1221. arXiv:0808.1782. Bibcode:2009NJPh...11h3032D. doi:10.1088/1367-2630/11/8/083032.
  119. ^ September 4, 2009 Home, J. P; Hanneke, D; Jost, J. D; Amini, J. M; Leibfried, D; Wineland, D. J (2009). "Complete Methods Set for Scalable Ion Trap Quantum Information Processing". Science. 325 (5945): 1227–30. arXiv:0907.1865. Bibcode:2009Sci...325.1227H. doi:10.1126/science.1177077. PMID 19661380.
  120. ^ Politi, A; Matthews, J. C; O'Brien, J. L (2009). "Shor's Quantum Factoring Algorithm on a Photonic Chip". Science. 325 (5945): 1221. arXiv:0911.1242. Bibcode:2009Sci...325.1221P. doi:10.1126/science.1173731. PMID 19729649.
  121. ^ Wesenberg, J. H; Ardavan, A; Briggs, G. A. D; Morton, J. J. L; Schoelkopf, R. J; Schuster, D. I; Mølmer, K (2009). "Quantum Computing with an Electron Spin Ensemble". Physical Review Letters. 103 (7): 070502. arXiv:0903.3506. Bibcode:2009PhRvL.103g0502W. doi:10.1103/PhysRevLett.103.070502. PMID 19792625.
  122. ^ September 23, 2009 Geordie. "Experimental Demonstration of a Robust and Scalable Flux Qubit". Retrieved September 24, 2009.
  123. ^ September 25, 2009 Colin Barras. "Photon 'machine gun' could power quantum computers". Retrieved September 26, 2009.
  124. ^ October 9, 2009 Larry Hardesty. "Quantum computing may actually be useful". Retrieved October 10, 2009.
  125. ^ November 15, 2009 New Scientist. "First universal programmable quantum computer unveiled". Retrieved November 16, 2009.
  126. ^ November 20, 2009 ScienceBlog. "UCSB physicists move 1 step closer to quantum computing". Archived from the original on November 23, 2009. Retrieved November 23, 2009.
  127. ^ December 11, 2009 Jeremy Hsu. "Google Demonstrates Quantum Algorithm Promising Superfast Search". Retrieved December 14, 2009.
  128. ^ Harris, R; Brito, F; Berkley, A J; Johansson, J; Johnson, M W; Lanting, T; Bunyk, P; Ladizinsky, E; Bumble, B; Fung, A; Kaul, A; Kleinsasser, A; Han, S (2009). "Synchronization of multiple coupled rf-SQUID flux qubits". New Journal of Physics. 11 (12): 123022. arXiv:0903.1884. Bibcode:2009NJPh...11l3022H. doi:10.1088/1367-2630/11/12/123022.
  129. ^ Monz, T; Kim, K; Villar, A. S; Schindler, P; Chwalla, M; Riebe, M; Roos, C. F; Häffner, H; Hänsel, W; Hennrich, M; Blatt, R (2009). "Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits". Physical Review Letters. 103 (20): 200503. arXiv:0909.3715. Bibcode:2009PhRvL.103t0503M. doi:10.1103/PhysRevLett.103.200503. PMID 20365970.
  130. ^ January 20, 2010 arXiv blog. "Making Light of Ion Traps". Retrieved January 21, 2010.
  131. ^ January 28, 2010 Charles Petit (January 28, 2010). "Quantum Computer Simulates Hydrogen Molecule Just Right". Wired. Retrieved February 5, 2010.
  132. ^ February 4, 2010 Larry Hardesty. "First germanium laser brings us closer to 'optical computers'". Archived from the original on December 24, 2011. Retrieved February 4, 2010.
  133. ^ February 6, 2010 Science Daily. "Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors". Retrieved February 6, 2010.
  134. ^ March 18, 2010 Jason Palmer (March 17, 2010). "Team's quantum object is biggest by factor of billions". BBC News. Retrieved March 20, 2010.
  135. ^ University of Cambridge. "Cambridge discovery could pave the way for quantum computing". Retrieved March 20, 2010. [dead link]
  136. ^ April 1, 2010 ScienceDaily. "Racetrack Ion Trap Is a Contender in Quantum Computing Quest". Retrieved April 3, 2010.
  137. ^ April 21, 2010 Rice University (April 21, 2010). "Bizarre matter could find use in quantum computers". Retrieved August 29, 2018.
  138. ^ May 27, 2010 E. Vetsch; et al. "German physicists develop a quantum interface between light and atoms". Archived from the original on December 19, 2011. Retrieved April 22, 2010.
  139. ^ June 3, 2010 Asavin Wattanajantra. "New form of LED brings quantum computing closer". Retrieved June 5, 2010.
  140. ^ August 29, 2010 Munro, W. J; Harrison, K. A; Stephens, A. M; Devitt, S. J; Nemoto, K (2010). "From quantum multiplexing to high-performance quantum networking". Nature Photonics. 4 (11): 792–796. arXiv:0910.4038. Bibcode:2010NaPho...4..792M. doi:10.1038/nphoton.2010.213.
  141. ^ September 17, 2010 Kurzweil accelerating intelligence. "Two-photon optical chip enables more complex quantum computing". Retrieved September 17, 2010.
  142. ^ "Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps". ScienceDaily. May 28, 2010. Retrieved September 20, 2010.
  143. ^ "Quantum Future: Designing and Testing Microfabricated Planar Ion Traps". Georgia Tech Research Institute. Retrieved September 20, 2010.
  144. ^ December 23, 2010 TU Delft. "TU scientists in Nature: Better control of building blocks for quantum computer". Archived from the original on December 24, 2010. Retrieved December 26, 2010.
  145. ^ Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L. W; Itoh, Kohei M; Morton, John J. L (2011). "Entanglement in a solid-state spin ensemble". Nature. 470 (7332): 69–72. arXiv:1010.0107. Bibcode:2011Natur.470...69S. doi:10.1038/nature09696. PMID 21248751.
  146. ^ February 14, 2011 UC Santa Barbara Office of Public Affairs. "International Team of Scientists Says It's High 'Noon' for Microwave Photons". Retrieved February 16, 2011.
  147. ^ February 24, 2011 Kurzeil Accelerating Intelligence. "'Quantum antennas' enable exchange of quantum information between two memory cells". Retrieved February 24, 2011.
  148. ^ Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L (2011). "Multimode quantum interference of photons in multiport integrated devices". Nature Communications. 2: 224. arXiv:1007.1372. Bibcode:2011NatCo...2E.224P. doi:10.1038/ncomms1228. PMC 3072100. PMID 21364563.
  149. ^ March 7, 2011 KFC. "New Magnetic Resonance Technique Could Revolutionise Quantum Computing". Retrieved March 8, 2011.
  150. ^ March 17, 2011 Christof Weitenberg; Manuel Endres; Jacob F. Sherson; Marc Cheneau; Peter Schauß; Takeshi Fukuhara; Immanuel Bloch & Stefan Kuhr. "A Quantum Pen for Single Atoms". Archived from the original on March 18, 2011. Retrieved March 19, 2011.
  151. ^ March 21, 2011 Cordisnews. "German research brings us one step closer to quantum computing". Retrieved March 22, 2011.
  152. ^ Monz, T; Schindler, P; Barreiro, J. T; Chwalla, M; Nigg, D; Coish, W. A; Harlander, M; Hänsel, W; Hennrich, M; Blatt, R (2011). "14-Qubit Entanglement: Creation and Coherence". Physical Review Letters. 106 (13): 130506. arXiv:1009.6126. Bibcode:2011PhRvL.106m0506M. doi:10.1103/PhysRevLett.106.130506. PMID 21517367.
  153. ^ May 12, 2011 Physicsworld.com. "Quantum-computing firm opens the box". Archived from the original on May 15, 2011. Retrieved May 17, 2011.
  154. ^ Physorg.com (May 26, 2011). "Repetitive error correction demonstrated in a quantum processor". physorg.com. Archived from the original on January 7, 2012. Retrieved May 26, 2011.
  155. ^ June 27, 2011 UC Santa Barbara. "International Team Demonstrates Subatomic Quantum Memory in Diamond". Retrieved June 29, 2011.
  156. ^ July 15, 2011 Nanowerk News. "Quantum computing breakthrough in the creation of massive numbers of entangled qubits". Retrieved July 18, 2011.
  157. ^ July 20, 2011 Nanowerk News. "Scientists take the next major step toward quantum computing". Retrieved July 20, 2011.
  158. ^ August 2, 2011 nanowerk. "Dramatic simplification paves the way for building a quantum computer". Retrieved August 3, 2011.
  159. ^ Ospelkaus, C; Warring, U; Colombe, Y; Brown, K. R; Amini, J. M; Leibfried, D; Wineland, D. J (2011). "Microwave quantum logic gates for trapped ions". Nature. 476 (7359): 181–184. arXiv:1104.3573. Bibcode:2011Natur.476..181O. doi:10.1038/nature10290. PMID 21833084.
  160. ^ August 30, 2011 Laura Ost. "NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit". Retrieved September 3, 2011.
  161. ^ September 1, 2011 Mariantoni, M; Wang, H; Yamamoto, T; Neeley, M; Bialczak, R. C; Chen, Y; Lenander, M; Lucero, E; O'Connell, A. D; Sank, D; Weides, M; Wenner, J; Yin, Y; Zhao, J; Korotkov, A. N; Cleland, A. N; Martinis, J. M (2011). "Implementing the Quantum von Neumann Architecture with Superconducting Circuits". Science. 334 (6052): 61–65. arXiv:1109.3743. Bibcode:2011Sci...334...61M. doi:10.1126/science.1208517. PMID 21885732.
  162. ^ Jablonski, Chris (October 4, 2011). "One step closer to quantum computers". ZDnet. Retrieved August 29, 2018.
  163. ^ December 2, 2011 Clara Moskowitz; Ian Walmsley; Michael Sprague. "Two Diamonds Linked by Strange Quantum Entanglement". Retrieved December 2, 2011.
  164. ^ Bian, Z; Chudak, F; MacReady, W. G; Clark, L; Gaitan, F (2013). "Experimental determination of Ramsey numbers with quantum annealing". Physical Review Letters. 111 (13): 130505. arXiv:1201.1842. Bibcode:2013PhRvL.111m0505B. doi:10.1103/PhysRevLett.111.130505. PMID 24116761.
  165. ^ Fuechsle, M; Miwa, J. A; Mahapatra, S; Ryu, H; Lee, S; Warschkow, O; Hollenberg, L. C; Klimeck, G; Simmons, M. Y (February 19, 2012). "A single-atom transistor". Nature Nanotechnology. 7 (4): 242–246. Bibcode:2012NatNa...7..242F. doi:10.1038/nnano.2012.21. PMID 22343383.
  166. ^ John Markoff (February 19, 2012). "Physicists Create a Working Transistor From a Single Atom". The New York Times. Retrieved February 19, 2012.
  167. ^ Grotz, Bernhard; Hauf, Moritz V; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A (2012). "Charge state manipulation of qubits in diamond". Nature Communications. 3: 729. Bibcode:2012NatCo...3E.729G. doi:10.1038/ncomms1729. PMC 3316888. PMID 22395620.
  168. ^ Britton, J. W; Sawyer, B. C; Keith, A. C; Wang, C. C; Freericks, J. K; Uys, H; Biercuk, M. J; Bollinger, J. J (April 26, 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins". Nature. 484 (7395): 489–492. arXiv:1204.5789. Bibcode:2012Natur.484..489B. doi:10.1038/nature10981. PMID 22538611.
  169. ^ Lucy Sherriff. "300 atom quantum simulator smashes qubit record". Retrieved February 9, 2015.
  170. ^ Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei (2012). "Experimental demonstration of topological error correction". Nature. 482 (7386): 489–494. arXiv:0905.1542. Bibcode:2012Natur.482..489Y. doi:10.1038/nature10770. PMID 22358838.
  171. ^ 1QBit. "1QBit Website".
  172. ^ October 14, 2012 Munro, W. J; Stephens, A. M; Devitt, S. J; Harrison, K. A; Nemoto, K (2012). "Quantum communication without the necessity of quantum memories". Nature Photonics. 6 (11): 777–781. arXiv:1306.4137. Bibcode:2012NaPho...6..777M. doi:10.1038/nphoton.2012.243.
  173. ^ Maurer, P. C; Kucsko, G; Latta, C; Jiang, L; Yao, N. Y; Bennett, S. D; Pastawski, F; Hunger, D; Chisholm, N; Markham, M; Twitchen, D. J; Cirac, J. I; Lukin, M. D (June 8, 2012). "Room-Temperature Quantum Bit Memory Exceeding One Second". Science (Submitted manuscript). 336 (6086): 1283–1286. Bibcode:2012Sci...336.1283M. doi:10.1126/science.1220513. PMID 22679092.
  174. ^ Peckham, Matt (July 6, 2012). "Quantum Computing at Room Temperature - Now a Reality". Magazine/Periodical. Time Magazine (Techland) Time Inc. p. 1. Retrieved August 5, 2012.
  175. ^ Koh, Dax Enshan; Hall, Michael J. W; Setiawan; Pope, James E; Marletto, Chiara; Kay, Alastair; Scarani, Valerio; Ekert, Artur (2012). "Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion". Physical Review Letters. 109 (16): 160404. arXiv:1202.3571. Bibcode:2012PhRvL.109p0404K. doi:10.1103/PhysRevLett.109.160404. PMID 23350071.
  176. ^ December 7, 2012 Horsman, C; Fowler, A. G; Devitt, S. J; Van Meter, R (2012). "Surface code quantum computing by lattice surgery". New J. Phys. 14 (12): 123011. arXiv:1111.4022. Bibcode:2012NJPh...14l3011H. doi:10.1088/1367-2630/14/12/123011.
  177. ^ Kastrenakes, Jacob (November 14, 2013). "Researchers smash through quantum computer storage record". Webzine. The Verge. Retrieved November 20, 2013.
  178. ^ "Quantum Computer Breakthrough 2013". November 24, 2013.
  179. ^ October 10, 2013 Devitt, S. J; Stephens, A. M; Munro, W. J; Nemoto, K (2013). "Requirements for fault-tolerant factoring on an atom-optics quantum computer". Nature Communications. 4: 2524. arXiv:1212.4934. Bibcode:2013NatCo...4E2524D. doi:10.1038/ncomms3524. PMID 24088785.
  180. ^ Penetrating Hard Targets project
  181. ^ NSA seeks to develop quantum computer to crack nearly every kind of encryption -- KurzweilAI.net January 3, 2014
  182. ^ NSA seeks to build quantum computer that could crack most types of encryption -- Washington Post
  183. ^ The NSA Is Building a Computer to Crack Almost Any Code - Time.com
  184. ^ August 4, 2014 Nemoto, K.; Trupke, M.; Devitt, S. J; Stephens, A. M; Scharfenberger, B; Buczak, K; Nobauer, T; Everitt, M. S; Schmiedmayer, J; Munro, W. J (2014). "Photonic architecture for scalable quantum information processing in diamond". Physical Review X. 4 (3): 031022. arXiv:1309.4277. Bibcode:2014PhRvX...4c1022N. doi:10.1103/PhysRevX.4.031022.
  185. ^ Nigg, D; Müller, M; Martinez, M. A; Schindler, P; Hennrich, M; Monz, T; Martin-Delgado, M. A; Blatt, R (July 18, 2014). "Quantum computations on a topologically encoded qubit". Science. 345 (6194): 302–305. arXiv:1403.5426. Bibcode:2014Sci...302..305N. doi:10.1126/science.1253742. PMID 24925911.
  186. ^ Markoff, John (May 29, 2014). "Scientists Report Finding Reliable Way to Teleport Data". New York Times. Retrieved May 29, 2014.
  187. ^ Pfaff, W; Hensen, B. J; Bernien, H; Van Dam, S. B; Blok, M. S; Taminiau, T. H; Tiggelman, M. J; Schouten, R. N; Markham, M; Twitchen, D. J; Hanson, R (May 29, 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science. 345 (6196): 532–535. arXiv:1404.4369. Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. PMID 25082696.
  188. ^ 28 November 2014 "New largest number factored on a quantum device is 56,153". Retrieved January 7, 2015.
  189. ^ 2 December 2014 "The Mathematical Trick That Helped Smash The Record For The Largest Number Ever Factorised By A Quantum Computer: 56153=233 x 241". Retrieved January 7, 2015.
  190. ^ Zhong, Manjin; Hedges, Morgan P; Ahlefeldt, Rose L; Bartholomew, John G; Beavan, Sarah E; Wittig, Sven M; Longdell, Jevon J; Sellars, Matthew J (2015). "Optically addressable nuclear spins in a solid with a six-hour coherence time". Nature. 517 (7533): 177–180. Bibcode:2015Natur.517..177Z. doi:10.1038/nature14025. PMID 25567283.
  191. ^ April 13, 2015 "Breakthrough opens door to affordable quantum computers". Retrieved April 16, 2015.
  192. ^ Córcoles, A.D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M (2015). "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits". Nature Communications. 6: 6979. arXiv:1410.6419. Bibcode:2015NatCo...6E6979C. doi:10.1038/ncomms7979. PMC 4421819. PMID 25923200.
  193. ^ June 22, 2015 "D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier". Retrieved June 22, 2015.
  194. ^ October 6, 2015 "Crucial hurdle overcome in quantum computing". Retrieved October 6, 2015.
  195. ^ "Quantum computer emulated by a classical system".
  196. ^ Monz, T; Nigg, D; Martinez, E. A; Brandl, M. F; Schindler, P; Rines, R; Wang, S. X; Chuang, I. L; Blatt, R; et al. (March 4, 2016). "Realization of a scalable Shor algorithm". Science. 351 (6277): 1068–1070. arXiv:1507.08852. Bibcode:2016Sci...351.1068M. doi:10.1126/science.aad9480.
  197. ^ September 29, 2016 Devitt, S. J (2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv:1605.05709. Bibcode:2016PhRvA..94c2329D. doi:10.1103/PhysRevA.94.032329.
  198. ^ Alsina, D; Latorre, J. I (2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv:1605.04220. Bibcode:2016PhRvA..94a2314A. doi:10.1103/PhysRevA.94.012314.
  199. ^ o'Malley, P. J. J; Babbush, R; Kivlichan, I. D; Romero, J; McClean, J. R; Barends, R; Kelly, J; Roushan, P; Tranter, A; Ding, N; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Fowler, A. G; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J. Y; Neeley, M; Neill, C; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T. C; Coveney, P. V; Love, P. J; Neven, H; et al. (July 18, 2016). "Scalable Quantum Simulation of Molecular Energies". Physical Review X. 6 (3): 031007. arXiv:1512.06860. Bibcode:2016PhRvX...6c1007O. doi:10.1103/PhysRevX.6.031007.
  200. ^ November 02, 2016 Devitt, S. J; Greentree, A. D; Stephens, A. M; Van Meter, R (2016). "High-speed quantum networking by ship". Scientific Reports. 6: 36163. arXiv:1605.05709. Bibcode:2016NatSR...636163D. doi:10.1038/srep36163. PMC 5090252. PMID 27805001.
  201. ^ "D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order | D-Wave Systems". www.dwavesys.com. Retrieved January 26, 2017.
  202. ^ Lekitsch, B; Weidt, S; Fowler, A. G; Mølmer, K; Devitt, S. J; Wunderlich, C; Hensinger, W. K (February 1, 2017). "Blueprint for a microwave trapped ion quantum computer". Science Advances. 3 (2): e1601540. arXiv:1508.00420. Bibcode:2017SciA....3E1540L. doi:10.1126/sciadv.1601540. PMC 5287699. PMID 28164154.
  203. ^ Meredith Rutland Bauer (May 17, 2017). "IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet". Motherboard.
  204. ^ "Qudits: The Real Future of Quantum Computing?". IEEE Spectrum. June 28, 2017. Retrieved June 29, 2017.
  205. ^ "Microsoft makes play for next wave of computing with quantum computing toolkit". arstechnica.com. September 25, 2017. Retrieved October 5, 2017.
  206. ^ Knight, Will (October 10, 2017). "Quantum Inside: Intel Manufactures an Exotic New Chip". MIT Technology Review. Retrieved July 5, 2018.
  207. ^ "IBM Raises the Bar with a 50-Qubit Quantum Computer". MIT Technology Review. Retrieved December 13, 2017.
  208. ^ Hignett, Katherine (February 16, 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek. Retrieved February 17, 2018.
  209. ^ Liang, Q. Y; Venkatramani, A. V; Cantu, S. H; Nicholson, T. L; Gullans, M. J; Gorshkov, A. V; Thompson, J. D; Chin, C; Lukin, M. D; Vuletić, V (February 16, 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science. 359 (6377): 783–786. arXiv:1709.01478. Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMC 6467536. PMID 29449489.
  210. ^ "Scientists make major quantum computing breakthrough". March 2018.
  211. ^ Giles, Martin (February 15, 2018). "Old-fashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. Retrieved July 5, 2018.
  212. ^ Emily Conover (March 5, 2018). "Google moves toward quantum supremacy with 72-qubit computer". Science News. Retrieved August 28, 2018.
  213. ^ Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. Retrieved July 12, 2018.
  214. ^ Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers. Retrieved July 5, 2018.
  215. ^ Nagata, K; Kuramitani, K; Sekiguchi, Y; Kosaka, H (August 13, 2018). "Universal holonomic quantum gates over geometric spin qubits with polarised microwaves". Nature Communications. 9 (3227): 3227. Bibcode:2018NatCo...9.3227N. doi:10.1038/s41467-018-05664-w. PMC 6089953. PMID 30104616.
  216. ^ Lenzini, Francesco (December 7, 2018). "Integrated photonic platform for quantum information with continuous variables". Science Advances. 4 (12): eaat9331. doi:10.1126/sciadv.aat9331.
  217. ^ https://physicsworld.com/a/ion-based-commercial-quantum-computer-is-a-first
  218. ^ https://ionq.com/
  219. ^ 115th Congress (2018) (June 26, 2018). "H.R. 6227 (115th)". Legislation. GovTrack.us. Retrieved February 11, 2019. National Quantum Initiative Act
  220. ^ "President Trump has signed a $1.2 billon law to boost US quantum tech". MIT Technology Review. Retrieved February 11, 2019.
  221. ^ "US National Quantum Initiative Act passed unanimously". The Stack. December 18, 2018. Retrieved February 11, 2019.
  222. ^ Aron, Jacob (January 8, 2019). "IBM unveils its first commercial quantum computer". New Scientist. Retrieved January 8, 2019.
  223. ^ "IBM unveils its first commercial quantum computer". TechCrunch. Retrieved February 18, 2019.
  224. ^ Dattani, Nike; Szalay, Szilard; Chancellor, Nicholas (January 22, 2019). "Pegasus: The second connectivity graph for large-scale quantum annealing hardware". arXiv:1901.07636 [quant-ph].
  225. ^ Dattani, Nike; Chancellor, Nicholas (January 23, 2019). "Embedding quadratization gadgets on Chimera and Pegasus graphs". arXiv:1901.07676 [quant-ph].
  226. ^ Kokail, C; Maier, C; Van Bijnen, R; Brydges, T; Joshi, M. K; Jurcevic, P; Muschik, C. A; Silvi, P; Blatt, R; Roos, C; Zoller, P (May 15, 2019). "Self-verifying variational quantum simulation of lattice models". Science. 569: 355–360. arXiv:1810.03421. Bibcode:2019Natur.569..355K. doi:10.1038/s41586-019-1177-4. PMID 31092942.
  227. ^ "Google may have taken a step towards quantum computing 'supremacy' (updated)". Engadget. Retrieved September 24, 2019.
  228. ^ Porter, Jon (September 23, 2019). "Google may have just ushered in an era of 'quantum supremacy'". The Verge. Retrieved September 24, 2019.
  229. ^ Murgia, Waters, Madhumita, Richard (September 20, 2019). "Google claims to have reached quantum supremacy". Financial Times. Retrieved September 24, 2019.
  230. ^ Shankland, Stephen. "IBM's biggest-yet 53-qubit quantum computer will come online in October". CNET. Retrieved October 17, 2019.
What is this?